Functional analysis implicating the SNP rs61552325 in ERBB2 as an effector for androgen-insensitive prostate cancer cell invasion
نویسندگان
چکیده
BACKGROUND As one of the most common cancers in men, the pathogenesis of prostate cancer has been widely researched. Aberrant activation of the erb-b2 receptor tyrosine kinase 2 (ERBB2) has been found to play a critical role in metastatic prostate cancer. In our previous study, we demonstrated that rs61552325 (Pro1140Ala) located in ERBB2 is strongly correlated to prostate cancer. Therefore, we initially studied the effect of rs61552325 on androgen-independent prostate cancer cell metastasis. RESULTS Bioinformatic results demonstrated that the mutant Pro1140Ala likely decrease the stability of the ERBB2 protein and its interactions. The mean migration rate after 6 h for PC3 minor variant cells which carried the G allele was 1.28-fold higher than major variant PC3 cells that carried the C allele (P = 0.016). The mean invasion rate of DU145 putative minor variant cells was 0.40 reducer than negative control cells (P = 5.9E-04). METHODS rs61552325 major variant (C allele) and minor variant (G allele) were produced by site directed mutagenesis and transfected into DU145 and PC3 cells. A wound healing assay was performed to compare migration abilities between alleles. After knocking down endogenous ERBB2 and then expressing the rs61552325 minor variant, invasion abilities were evaluated with a transwell assay using DU145 and PC3 cells. CONCLUSIONS Our data showed that the rs61552325 major variant decreases PC3 cell migration and its minor variant depresses DU145 cell invasion, suggesting that rs61552325 is likely an important change during prostate cancer invasion.
منابع مشابه
ERBB2 Increases Metastatic Potentials Specifically in Androgen-Insensitive Prostate Cancer Cells
Despite all the blood-based biomarkers used to monitor prostate cancer patients, prostate cancer remains as the second common cause of cancer mortality in men in the United States. This is largely due to a lack of understanding of the molecular pathways that are responsible for the aggressive forms of prostate cancers, the castrate-resistant prostate cancer and the metastatic prostate cancer. C...
متن کاملWwox suppresses prostate cancer cell growth through modulation of ErbB2-mediated androgen receptor signaling.
The expression of the WWOX tumor suppressor gene is lost or reduced in a large fraction of various cancers, including prostate cancer. We previously reported that Wwox overexpression induced apoptosis and suppressed prostate cancer growth in vitro and in vivo. In this study, pathways through which Wwox contributes to control of prostate cancer cell growth have been investigated. We found that W...
متن کاملStudy of NGEP expression in androgen sensitive prostate cancer cells: A potential target for immunotherapy
Background: Prostate cancer is one of the leading causes of cancer deaths among men. New gene expressed in prostate (NGEP), is a prostate-specific gene expressed only in normal prostate and prostate cancer tissue. Because of its selective expression in prostate cancer cell surface, NGEP is a potential immunotherapeutic target. To target the NGEP in prostate cancer, it is essential to investig...
متن کاملTotal glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells
Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP), the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS)-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incu...
متن کاملGrowth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts.
Experiments with human prostate cancer cell lines have shown that forced overexpression of the ErbB2-receptor tyrosine kinase (RTK) promotes androgen-independent growth and increases androgen receptor-transcriptional activity in a ligand-independent fashion. To investigate the relationship between ErbB-RTK signaling and androgen in genetically unmanipulated human prostate cancer, we performed b...
متن کامل